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Abstract—Modern computing systems deploy a plethora of
machine learning accelerators (MLA) to solve some of the most
complex and challenging problems in computer vision (CV),
natural language processing (NLP), recommendation systems and
many other domains. Depending upon the use cases, these MLA
based systems can be part of anything from simple handheld
mobile devices to large scale, complex systems that are used in the
clouds and supercomputers. Their adoption is mainly fueled by
unprecedented success in various traditional and non-traditional
prediction and generative tasks. Designing MLLA based systems in
an efficient manner to achieve the best performance and energy
efficiency requires a careful design space exploration and detailed
modeling to understand the workload behaviors in order to make
near-optimal architectural decisions.

One of the most predominantly used framework to study the
impacts of various architectural choices is Speed-of-Light (SOL)
model that provides early insight into the system and enables
designers to co-optimize for various desired metrics. In this paper,
we present an SOL model — named as MBR-sim - that can be
used to study various CNN and NLP workloads in the context
of various MLA systems to make better design decisions. With a
set of sensitivity studies, we also demonstrate the use case where
this tool can be used to help understand various design trade-offs
and aid software development process. Finally, we open-sourced
MBR-sim for the wider research community to explore, validate
and reproduce their ideas to conceive, architect and design more
efficient and greener systems.

Index Terms—Machine Learning Accelerator, Speed-of-Light
Models, Roofline Analysis, Pipeline parallelism, ResNet50, BERT

I. INTRODUCTION

In the last decade we have witnessed unprecedented growth
of user data across various application segments and a lot of
it is from social media interactions. To understand various
trends, which are essential for many businesses, we not
only have to process this huge data but also in an efficient
manner to minimize capital expenditure (capex) and operating
expenses (opex). To handle such requirements posed by big-
data, traditional CPU and GPU based systems are increasingly
displaced by application specific chips/systems and one broad
category is MLA based systems.

MLAs are being rapidly adapted as the preferred option
for carrying out various computations these days. A few well
known examples are Google’s TPU [1]], Microsoft’s Brainwave
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[2], and many other similar systems that are running large
scale training and inference workloads for various applica-
tions. Today most big companies that are dealing with large
data, deploy custom hardware to accelerate these applications.
Examples include large scale machine learning models with
trillions of parameters. For example, e-commerce giants like
Amazon, Alibaba and social media companies deploy a whole
range of models to understand user behaviors to recommend
products, content based on their past interactions and insights.

Designing MLA based systems to achieve best performance
and energy efficiency requires a careful design space explo-
ration and detailed modeling to understand the workload be-
haviors in order to make near-optimal architectural decisions.
A detailed performance modeling and cycle-level simulation is
often too costly in terms of schedule (takes few months, if not
years) and developers time (10s of person-years). Designing
these systems is not only difficult but it requires complex sim-
ulation framework and performance modeling infrastructure,
which is often only applicable to a set of architectures and
doesn’t extend well to other accelerator families.

Early in the exploration phase, one of the proven approaches
across the industry is to understand the high level behavior of
the system and various bottlenecks arising from insufficient
compute, memory or communication resources. In this paper,
we propose a generic performance model framework, known
as MBR-sim, to address the need of analyzing various kind of
general and domain-specific MLAs. Our framework treats a
system as a collection of “rate engines” which work together
to achieve a common goal. The proposed framework takes a
system configuration as a set of tune-able parameters and runs
the simulated accelerator against any workload.

The rest of the paper is organized as follows: Section II
presents a brief overview of related work. Section III provides
additional detail about the motivation. Section IV presents
our detailed methodology and how ML models are mapped
to various hardware resources. We present experimental setup
and analysis in Section V and potential future work in Section
VI before concluding our findings in Section VIIL.

II. RELATED WORKS

This section presents a brief overview of workload paral-
lelism and various other ML Accelerator Simulators.



A. ML Parallelism Overview

1) Pipeline Parallelism: Pipeline parallelism (PP), also
known as streaming, is based on assembly line production.
This mechanism often achieves best utilization of resources,
minimizes idle time at the cost of end-to-end latency. As
shown in Figure 1 (A), we divide a workload graph into N
equal stages or sub-graphs and then map them into N hardware
resources capable of executing them efficiently such that each
unit finishes the assigned jobs in roughly equal time [3]. PP
is effectively used in various inference applications where
achieving best throughput and highest utilization of resources
is more important than inference latency.

2) Model Parallelism: In modern ML systems, we deploy
ML models that are quite large. These are few trillion pa-
rameter models and are hard to store in a single device. In
order to achieve best performance, these models are broken
into multiple sub-graphs which are executed across multiple
devices. This kind of parallelism is known as a naive model
parallelism (MP). A more sophisticated model parallelism
micro-batches the batched model in such a way as is shown
in Figure 1 (C), the deep learning model being partitioned
across multiple machines. True model parallelism allows the
partitioned sections to be run concurrently for different inputs
similar to a software pipeline approach [3].

3) Data Parallelism: Data parallel (DP) and batched mode
are often used interchangeably where the processing steps
across a set of compute resource is exactly same. However,
the input to these resources are different as in from different
sources or users. As shown in Figure 1 (B) we split the data
(consist of large number of inputs) into multiple nodes, where
each node operates or does same compute on these data in
parallel [3]. DP is quite popular in inference application where
the network are rather simpler and there is a lot of data to
process across a large number of compute blocks to achieve
high throughput.

4) Tensor Parallelism: Finally, large models also process
huge tensors and in many cases the processing elements level
memory may not be enough to hold these large tensors. In
that case, tensors (either activation or weights or both) divided
into multiple chunks and streamed to processing elements one
after another. This kind of parallelism is known as Tensor
parallelism (TP). As shown in Figure 1 (D), we are breaking a
weight into multiple chunks and assigning to a set of compute
elements to reduce the processing time. However, depending
upon the way we partition these tensors, it might results into
increased communication and might hurt overall utilization
and performance.

B. Putting It Together

In MBR-sim, we primarily explore PP due to inference
model use case and relatively smaller workloads. Some large
layers are assigned to multiple processing elements which
follows TP. Going forward, we do plan to support DP and
MP as part of our future exploration of large models.
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Fig. 1. Types of ML Workload Parallelism

III. MOTIVATION
A. ML Accelerator Simulators

There are a wide variety of ML Accelerator Simulators.
Some simulators are built to test chips that the project created,
like PUMA, while others try to simulate a wide vareity of
silicon. Simulators like timeloop, STONNE, and MAESTRO
focused on Deep Neural Networks, while Sparseloop was
unique in focusing on sparse tensor accelerators. The salient
features of each simulator are listed in Table 1.

TABLE 1
OTHER ML ACCELERATOR SIMULATORS

[ Name | Main Features |
STONNE [4] - Cycle-level microarchitectural simulator
- Evaluation of both dense and sparse real, unmodi-
fied DNN models
MAESTRO [6] | - Showcases execution time and energy efficiency of

a data flow for a DNN model

- Models sparse tensor accelerators

- Comprehends a large set of architecture specifica-
tions, including various data flow and acceleration
features

- Includes a mapper that has the best way to schedule
operations which allows accurate projections

- Dataflow and memory hierarchy co-design al-
low for optimizing energy efficiency shown through
model

- Simulator specifically created as part of overall
PUMA work.

- Incorporates functionality, timing, and power mod-
els for the architecture

Sparseloop [8]

Timeloop [10]

PUMAsim [9]

Table I lists various open-source ML accelerator simulators
and clearly shows the need for a generic performance model
which can simulate a number of workloads from a simpler
description for a set of architectures. A high-level analytical
model like SOL has many use cases in the whole exploration
process. Early in the design phase, it can help understand the



workload behavior. For example, we can understand which
layers are compute vs memory vs communication bound based
on arithmetic intensity.

Secondly, it can be used as cost-model for MLtools and to
help understand for example which quantization and sparsity
level optimizations bring more benefits while maintaining the
desired accuracy.

Thirdly, SOL can also help ML compiler to understand
the efficacy of various mapping and scheduling decisions
and provide guidance about various heuristics to improve the
overall performance.

Finally, an end-to-end SOL model can provide early pro-
jections of key workloads and help enable the comparison
with other systems and competitive analysis to help justify
the choice of architecture. It can also point out to various
bottlenecks which can be addressed via hardware-software co-
optimization to build better systems.

IV. OUR METHODOLOGY

This section presents our detailed modeling and high-level
description of each phase. To simulate a workload, we need
a fairly high-level description of the workload which can be
either layer or task level with the right parameters such as
tensor sizes, data types, etc. We also need various system
components described as the knobs to the framework.
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Fig. 2. SOL methodology and various steps

A. Workloads Under Consideration

There are 6 different workloads represented in this study.
The main two are ResNet50 (CNN) and BERT-Small (NLP).
The SOL model can accept any other similar workloads, cov-
ering a wide variety of ML models. In this paper, MobileNet-
Base, MobileNet-Large, BERT-Base, and BERT-Lare were
also tested. Some of the key metrics of the two primary
workloads are listed in Table II.

TABLE II
WORKLOAD INFORMATION

[ Workload [ MACS(Bil.) | Layers | Wgts(Mil.) |

ResNet50v1.5 (MLPerf) 4.089 122 25.5
BERT-Small (Encoder) 5.35 15 13.5
BERT-Small (Workload) 130 15 340

B. Workload Description

A workload for MBR-Sim requires specific information to
be accurately represented. For each layer, we need its name
and the type that the layer might be (MatMul, SoftMax,
Convolution, etc.) These two pieces of information are the
most crucial in determining the effective utilization and certain
characteristics of the layer. The model also needs the dimen-
sions for the input and output tensors, and the weight tensors
if this is a linear layer. This information is used to determine
the sizes of each tensor, and it also helps estimate the overall
cycles.

The SOL model assumes that all tensors have 3 dimensions
for Input and Output, with 4 dimensions for Weight. For
any layer with fewer dimensions, the trailing dimensions are
assigned a value of 1 to keep our model simplistic. The last
piece of information required by our simulation is the datatype
for each different tensor for each layer. The simulation is based
on the Int8 datatype, however, conversions between that and
Fpl6, Intl6, and more data types are automatically handled
within the simulation.

Testing additional workloads is not a challenge, however,
the simulation may need additional configuration information.
Performance for SIMD Operations that are not listed will need
to be added, and any Linear Operations beyond MatMul and
Convolution will require additional support.

C. Cycles Estimations

There are a few assumptions as a part of the model. One of
the assumptions is that inter-chip communication will not be
a limiting factor for most cases and chip-to-chip bandwidth
is adequate. This means that as data is transferred between
chip resources, these bandwidth limitations will not have a
significant impact on the overall performance.

Another assumption made is that most workloads are
mapped in the processes defined below. Alternate mapping
solutions will impact the overall performance in a way that is
unpredictable, so the current mapping algorithm is not special-
ized based on the workload. Another assumption is the general
performance of SIMD operations (Add, Multiply, SoftMax,
Eltwise Add, etc.). The performance of said operations is
dependent on the actual silicon being modeled, but for base
testing, a relative performance is assumed.

To calculate chip-level information, there are a couple
equations in place. For the overall throughput, if we assume a
pipeline parallelism configuration is in use, then the worst-case
stage cycles are used to base most calculations. If, however, the
configuration is set to tensor parallelism, then the throughput



Algorithm 1 Metric Equations for Pipeline Parallelism

MACUtilization <+ (total MACS/((MACBW) =«
tiles)/)/maxLayerCycles

IPS/Chip + systemFreq/maxLayerCycles

Latency < 1/(IPS/Chip)

is calculated by the total cycles in the layers divided by the
number of tiles.

D. Mapping

The current mapping algorithm has two stages. The first
stage consists of one pass through all of the layers that need to
be mapped. If the number of layers is greater than the number
of tiles available, the simulator’s priority is to combine the
smallest layers together (as long as the combined layers weight
does not exceed the capacity). It will only combine two layers
that are adjacent to each other within the workload. To start
this selection, the simulator finds the smallest layer and then
finds its smallest adjacent layer, using the layer cycles to sort
and calculate. However, if the number of layers is less than
the number of tiles available, the the simulator will focus on
splitting the largest tiles in half and decreasing the sizes of
the bottleneck layers. The largest tiles (compared using layer
cycles) are split in half through each tensor (Input, Output,
Weight).

Algorithm 2 Mapping Stage 1 Algorithm

nodes + || > Nodes is a sorted array by layer cycles
target NumTiles < 64
while nodes.length # target NumTiles do
if nodes.length < target NumT'iles then
largest Node <— maxLayer(nodes)
split Nodes < splitNode(largest N ode) >
Function defined in appendix
nodes.remove(largest N ode)
nodes.add(split N odes)
else if nodes.length > target NumT'iles then
sNode < minLayer(nodes)
pairedNodes < adjacentLayers(sN ode) >
Function defined in appendix
pNode < minLayer(pairedN odes)
cNode < combine(sNode, pNode)
defined in appendix
nodes.remove(sNode, pN ode)
nodes.add(cN ode)
end if
end while

> Function

The second stage is to manage the bottlenecks and optimize
the tiles efficiently. For this, the simulator iterates in a loop
where it seeks out the 2 smallest adjacent layers and the largest
layer. If the combined cycle count for the smallest layers is
less than the current largest layer’s cycles, it makes sense to
combine the smallest layers and break the largest layer.

This makes sense since the system minimizes the bottle-
necks by shrinking the number of outliers on the smaller and

larger layers. To keep layer splitting simple, all layers are
split in half, bringing each split layer closer to the average
layer cycles across the silicon. This system of splitting and
combining was inspired by a Binary Tree.

By combining the smallest layers the cycles are added
together, while the cycles from the largest layer are halved
since the layer is now mapped to two separate tiles. This
decreases the max cycles on the chip as the current bottleneck
layer was split in half. Splitting and combining layers will keep
the number of tiles utilized consistent, while also decreasing
the overall number of bottlenecks. During the combination
and splitting of layers, the model utilizes the algorithms from
the prior pass. This continues to occur until the case that the
smallest layers when combined would have larger cycles than
the current largest node, thus increasing the bottleneck layer.

Algorithm 3 Mapping Stage 2 Algorithm

nodes <+ [ListofNodes]
excludeNodes + |]
while nodes.length # 0 do
sNode < minLayer(nodes)
pairedNodes < adjacentLayers(sNode)
defined in appendix
pNode < minLayer(paired N odes)
INode < maxLayer(nodes)
if sNode.cycle + pNode.cycle > I Node.cycle then
nodes.remove(sN ode)
excludeN odes.add(sN ode)
else
splitNodes < splitNode(IN ode)
defined in appendix
nodes.remove(largest N ode).add(split N odes)
cNode < combine(sNode, pNode) > Function
defined in appendix
nodes.remove(sNode, pNode).add(cN ode)
end if
end while
nodes < excludeN odes

> Function

> Function

V. EXPERIMENTAL ANALYSIS

This section presents our experimental setup and a few
configurations to help understand the key results, insights, and
various other interesting features. To test the current model,
experiments utilized a sample base hardware configuration.
The key characteristics of this configuration are listed below:

A. System Configurations

To experiment and utilize our model, we needed to create
a sample system. For example, we needed to determine the
Elements/cycle for SIMD Performance. We determined the
values below by analyzing kernel performance for our sample
hardware, along with estimating the relative performance of
each layer compared to each other

Alongside SIMD Performance, there were additional con-
figurations. These included the relative conversion factors
between different datatypes and some simulation parameters.
These are the knobs that can easily be modified to see



TABLE III
SIMD PERFORMANCE INT8/FP16* (ELEMENTS/CYCLE)

STMD Layer Type SCALE | RELU | ADD/MUL

TRANSPOSE

GELU* | MAXPOOL | AVGPOOL | SFMAX* | LYRNORM#*

Performance (Elem/cy) 16 16 16 8

8 4 2 2 2

performance differences between different, but very similar
chips. Using these knobs, we can easily conduct sensitivity
analyses and find the relative performances of different chips.

TABLE IV
BASELINE ML ACCELERATOR HARDWARE CONFIGURATION
| Simulation params | Value |
Number of Tiles (N) 64
GEMM Throughput (MACs/cy) 1024
NoC Bandwidth (B/cy) 32
SIMD Vector Width (bit) 512
Tile Weight Capacity (KB) 2048
Clock Freq (MHz) 1000

B. Primary Results

The primary focus was on MAC Utilization and IPS/Chip
projections. In Figure 3, the IPS/Chip varies between each
workload. However, MAC utilization is very consistent for
ResNet50 and BERT workloads, suggesting that they are bot-
tlenecked by GEMM operation. The later sensitivity analyses
performed will help us decipher these bottlenecks and see the
relative performance of different designs.
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Fig. 3. Primary results for MAC utilization and IPS/Chip. BERT-Large is a
single encoder result

One thing to note is that all BERT results are for a single
encoder running on a single chip. This means that the full
BERT workloads will require one chip/encoder layer with a
batch size equal to the of encoder layers to achieve this IPS.

C. Mapping Information at Tile Level

Figures 4 and 5 show the mapping information for ResNet50
and BERT-Small. Due to the mapping algorithms 1 and 2, the
actual tiles have relatively even loads. The largest tile has layer
cycles less than 2x those of the smallest tile, thus fitting within
our requirements for a “balanced” distribution. The Layer IDs
correspond to specific linear layers within the workload.

D. MAC Sensitivity

To understand the scaling due to higher MAC resources,
we present the MAC sensitivity study in Figure 6. The base-
line system is 1024 MAC bandwidth. Clearly, all workloads,
excluding MobileNet, are limited by MAC Bandwidth. Each

Fig. 4. Mapping information BERT-Small (1 Encoder) mapped in a 16 tile
system with a 2048 KB Tile Weight Capacity. Even though there are some
bottleneck tiles, it is hard to reduce cycles because other tiles’ cycles are in
the same order as bottleneck layer tiles.
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Fig. 5. Mapping information ResNet50 mapped in a 16 tile system with a
4096 KB Tile Weight Capacity.

time the MAC BW doubles, the throughput also doubles. With
this information, it is easy to understand that these workloads
in the current system are bottlenecked by GEMM hardware.

E. SIMD Sensitivity

Another sensitivity analysis could be of the SIMD vector
width. The model can look at a variety of different options to
showcase estimated performance. In Figure 7, the SIMD Vec-
tor Width for the same hardware configuration is showcased.



mmm ResNet50
Bmm MobileNet Base

mmm BERT Base
I BERT Large

MobileNet Large
BERT Small

IPS/Chip

256 512 1024

MAC Bandwidth

2048 4096

Fig. 6. GEMM Throughput Sensitivity Analysis
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Fig. 7. The SIMD Vector width sensitivity analysis shows that only at 128-bit
wide do bottlenecks appear.

FE NoC Sensitivity
Similarly, a NoC sensitivity study can be performed on the
workloads. In Figure 8, the results are showcased.
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Fig. 8. The NoC bandwidth sensitivity analysis shows the performance of
5 different bandwidths. Performance degradation is only seen in the lowest
bandwidth of 4 B/cy.

G. Tile Weight Capacity

Another sensitivity analysis included in the model is testing
specific Tile Weight Capacities. For example, in Figure 9,
we see that our Baseline Configuration would see a nearly
50% improvement in performance by doubling the tile weight
capacity for BERT. However, for ResNet50, the performance
would roughly remain unchanged.
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Fig. 9. The tile weight sensitivity analysis for the sample hardware configu-
ration

H. Source Code

Our SOL project is open-sourced through GitHub at
https://github.com/MBR-sim/MBR-sim. While it is free for
academic purposes, for commercial use cases explicit written
approval is required from the authors of this paper.

VI. FUTURE WORK

In the current version of the SOL model, we primarily use
PP which is efficient for inference applications to achieve high
throughput and good resource utilization. However, PP also
results in relatively higher latency and for training workloads
and we may have to use other types of parallelism.

In the next version of the simulator, we plan to support
various other kinds of parallelism along with more workloads.
The current version supports CNN and NLP BERT-like work-
loads. Going forward, our plan is to enable support for auto-
regression models like GPT-3 and recommendation system
which often rely on large embedding tables and sparseNN
compute.

VII. CONCLUSION

Today we deal with an unprecedented scale of data which
is generated from various social media interactions and other
similar sources. In order to process and gain insights from
such huge data, we have successfully deployed a set of
machine learning algorithms. These algorithms are incredibly
complex, and ultimately require specialized hardware in order
to minimize inference time and power consumption. Many
special use case tools have been developed to analyze the
performance of these models to see how to improve them, but
nobody has focused on creating such tools to analyze models
on ANY hardware. In this paper, we proposed an SOL perfor-
mance modeling tool which abstracts away any unnecessary
hardware complexities while providing the needed granularity
to effectively tune any model which you so desire.
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APPENDIX

Pseudo-code function definitions

Algorithm 4 Definition of combineNode()
fNode > This is first node to combined
sNode > This is second node to combined
cNode < fNode.copy()
cNode.outputTensor < sNode.outputTensor
cNode.macs < fNode.macs + sNode.macs
cNode.simd < fNode.simd + sNode.simd

Algorithm 5 Definition of splitNode()

oNode > This is the original node to be split
sNodes < || > Array of split Nodes
1+ 0

while i < 2 do
sNode <+ oN ode.copy()
sNode.outputTensor < oNode.outputTensor /2
sNode.inputTensor < oNode.inputTensor /2
sNode.weightTensor + oNode.weightTensor /2
sNode.macs < oNode.macs/2
sNode.simd < oNode.simd /2
sNodes.add(sNode)
1 1+1

end while

In Algorithm 6, each node has a unique ID. This unique
ID corresponds to the nodes location within the workload. A
lower ID means that the node occurred earlier in the workload.

Algorithm 6 Definition of adjacentLayers()

oNode > This is the original node
nodes + || > Array of all Nodes
aNodes + || > All adjacent nodes, currently empty

while nodes.length # 0 do
node < nodes.remove(0)
if node.ID = oNode.ID — 1 then
aN odes.add(node)
else if node.ID = oNode.ID + 1 then
aNodes.add(node)
end if
end while
adjacentNode <— minLayer(aN odes)
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